
227
227

In: Lambers H ed. A Jewel in the Crown of a Global Biodiversity Hotspot.  
Perth: Kwongan Foundation and the Western Australian Naturalists’ Club Inc.

NUTRIENT-ACQUISITION STRATEGIES

Hans Lambers, Felipe E. Albornoz, André J. Arruda, Toby Barker, Patrick M. Finnegan,  

Clément Gille, Haylee Gooding, G. Kenny Png, Kosala Ranathunge, Hongtao Zhong

INTRODUCTION

PLANT LIFE IN THE SOUTHWEST of Western Australia 
has evolved on some of the world’s most nutrient-
impoverished soils. The availability of phosphorus 
is particularly low, but soil nitrogen, potassium 
and micronutrients are also notoriously scarce 
(McArthur, 1991). The extreme infertility of most 
soils is primarily due to the low nutrient content of 
the parent materials that gave rise to the sands and 
clays that are present (Wyrwoll et al., 2014; Lane & 
Evans, 2019), as well as to their old age and strong 
degree of weathering (Leopold & Zhong, 2019). 
Over time, weathering leads to the loss of rock-
derived nutrients (e.g., phosphorus) in the absence 
of major soil-rejuvenating processes (e.g., glaciations, 
volcanic eruptions, landslides) (Walker & Syers, 
1976). On the other hand, nitrogen is mainly 
derived from the atmosphere, and continuously lost 
from the system, predominantly as a result of fire, 
when most nitrogen is volatilised (Wittkuhn et al., 
2017). Therefore, biological fixation of atmospheric 
nitrogen is crucially important to compensate for 
losses due to fire. 

Given that extreme soil infertility imposes a 
severe constraint to plant growth, one might expect the 
south-western Australian flora to show low diversity, 
composed of only a restricted number of plant species 
that evolved the necessary adaptions to successfully 
grow on these soils. Yet we find the exact opposite. 
A key feature of the flora is its exceptionally high 
degree of floristic and functional diversity (Lambers 
et al., 2010; Zemunik et al., 2016). Interestingly, 
the greatest biodiversity in the southwest is found 

on the most severely phosphorus-impoverished 
soils (Lambers et al., 2010; 2014; Zemunik et al., 
2016). In these environments, competition among 
plants tends to be less important than it is in more 
nutrient-rich habitats; instead, facilitation, where one 
plant benefits from its neighbour, is more common 
(Lekberg et al., 2018).

In this chapter, we present the main nutrient-
acquisition strategies displayed by plants in the 
region that The Beeliar Group proposed as the Yule 
Brook Regional Park, and discuss their functioning. 
First, we focus on non-mycorrhizal species with 
specialised root adaptations to acquire phosphorus, 
as they are relatively abundant, compared with 
plants in regions where soil phosphorus availability 
is greater (Lambers et al., 2014). Many of these 
specialised root adaptations would also enhance 
the acquisition of micronutrients, as discussed 
below. Second, we present some of the mycorrhizal 
strategies that we can find in the region, with the 
exception of the strategy in orchids, as this is covered 
in a separate chapter (Swarts & Dixon, 2019). 
Third, we present several symbiotic systems that 
contribute to biological nitrogen fixation, including 
the nodules of the legume-rhizobium symbiosis, the 
rhizothamnia of sheoaks and associated Frankia, 
an actinomycete, and the coralloid roots of cycads 
and associated cyanobacteria (Lambers et al., 2014). 
We will leave the specialised nutrient-acquisition 
strategies of the many carnivorous (Cross, 2019) and 
those of parasitic species (Ranathunge et al., 2019) 
in the region for separate chapters in this book.
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PHOSPHORUS-ACQUISITION STRATEGIES

Broadly speaking, there are mycorrhizal and 
non-mycorrhizal phosphorus-acquisition strategies. 
The vast majority of vascular plants are mycorrhizal, 
only 8% are completely non-mycorrhizal and 7% 
have inconsistent non-mycorrhizal-arbuscular myc-
orrhizal associations (Brundrett & Tedersoo, 2018). 
Although mycorrhizal phosphorus acquisition is 
common in vascular plants, on the severely phospho-
rus-impoverished soils of south-western Australia, 
non-mycorrhizal species are far more common than 
expected on the basis of global figures (Lambers et 
al., 2010; 2014). Below, we explain this paradox.

Cluster roots in Proteaceae, Casuarinaceae  
and Fabaceae
Almost all Proteaceae are non-mycorrhizal and most 
of them produce cluster roots (Shane & Lambers, 
2005). Originally, the term ‘proteoid’ roots was used, 
because these specialised roots were first discovered 
in Australian Proteaceae (Purnell, 1960). They 

have since been found in other families including 
Casuarinaceae, e.g., Allocasuarina humilis (Lambers 
et al., 2014) and Fabaceae, e.g., Viminaria juncea 
(swishbush) (Lamont, 1972) and Daviesia cordata 
(Brundrett & Kendrick, 1988). Thus, cluster roots is 
now the preferred term.

Most Proteaceae species as well as cluster-root 
forming species in other families produce ‘simple’ 
cluster roots (Fig. 1). Simple cluster roots have a 
bottlebrush-like morphology. The main root is 
perennial, while cluster roots are ephemeral. For 
example, rootlet initiation to senescence occurs over 
approximately three weeks in Hakea prostrata (harsh 
hakea) grown in hydroponics at low phosphorus 
concentrations (Shane et al., 2004). When growing 
in soil, relatively large volumes of soil become 
tightly bound to maturing cluster roots (Fig. 1). 
The formation of simple cluster roots in Hakea 
prostrata and many other Proteaceae is suppressed 
when plants are supplied with even relatively low 
phosphorus levels (Shane et al., 2003).

Some Fabaceae and Casuarinaceae also produce 

FIGURE 1. Simple cluster roots of Hakea ceratophylla (horned leaf hakea). Photo: Hans Lambers.
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cluster roots (Fig. 2). Daviesia cordata (bookleaf ) 
and Daviesia physodes (prickly bitter pea) are both 
non-mycorrhizal and both produce cluster roots 
(Brundrett & Abbott, 1991). However, Viminaria 
juncea (swishbush) makes both cluster roots 
(Lamont, 1972) and symbiotic associations with 
arbuscular mycorrhizal fungi (Brundrett & Abbott, 
1991). In an attempt to discover whether phos-
phorus supply would cause a switch between the 
two phosphorus-acquisition strategies, de Campos 

et al. (2013) discovered that they never switch off 
either strategy. The presence of these two strategies 
is associated with remarkably low leaf phosphorus 
concentrations, independently of phosphorus 
supply. This situation had never been found in any 
other plant species; leaf phosphorus concentrations 
invariably increase with increasing phosphorus 
supply (Lambers et al., 2008a). Allocasuarina humilis 
produces simple cluster roots (Fig. 2) as well as my-
corrhizas. However, the mycorrhizal symbioses are 

FIGURE 2. Simple cluster roots of (a) Allocasuarina humilis (dwarf sheoak) and (b) Viminaria juncea (swishbush). Previously unrecorded cluster roots 
of (c) Daviesia physodes (prickly bitter pea). Photos: a: Graham Zemunik; b: Michael W. Shane; a, inset, c: Hongtao Zhong.
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unlikely to substantially assist phosphorus uptake by 
the Casuarinaceae in severely phosphorus-impover-
ished soils of the Bassendean dunes. This is because 
roots of Allocasuarina humilis possess generally 
low levels of mycorrhizal colonisation (<20%) and 
colonisation does not significantly increase with 
decreasing soil phosphorus availability (Png et al., 
2017). The role of the mycorrhizas is likely to boost 
plant defence against pathogens, rather than en-
hancing phosphorus uptake (Albornoz et al., 2017; 
Lambers et al., 2018).

‘Compound’ cluster roots are typical for all 
Banksia species (Fig. 3). Here, branched rootlets 
form cluster roots with a Christmas-tree-like mor-
phology. In hydroponically-grown Banksia attenuata 
(slender banksia), the life span of a rootlet is over 
15 days from initiation to maturity (Lambers et al., 
2014; Beeck, 2017). In field-grown banksias, a thick 
cluster-root mat typically develops just beneath the 
leaf litter or an ash bed (Fig. 3). As in the simple 
cluster roots of Hakea prostrata, the formation of 
compound cluster roots in banksias is suppressed 
when plants receive sufficient phosphorus, and 
induced when phosphorus supply is insufficient 
(Lambers et al., 2002).

Both simple and compound cluster roots 
effectively ‘mine’ soil phosphorus. They release vast 

amounts of carboxylates (the ionic component of 
organic acids) (Fig. 4). These are negatively charged, 
just like phosphate ions in soil. If the concentration 
of carboxylates is sufficiently high, they replace 
phosphate that is bound to soil particles, pushing 
phosphorus into solution, making it available for 
uptake by roots (Lambers et al., 2015). Hakea 
prostrata and some other species with simple cluster 
roots release the carboxylates in an exudative burst, 
so the phosphorus is mobilised before microbes 
can build up and consume them (Watt & Evans, 
1999; Shane et al., 2004; Delgado et al., 2014). In 
Banksia attenuata (slender banksia) and Banksia 
sessilis (parrot bush), the release of carboxylates is 
slower, but steady until they senesce, without an 
‘exudative burst’ (Beeck, 2017). Cluster roots also 
release phosphatases, giving them access to organic 
phosphorus (Gilbert et al., 1999; Grierson &  
Adams, 2000).

The costs associated with the formation and 
functioning of cluster roots are large, compared 
with those associated with maintaining mycorrhizas 
(Raven et al., 2018). Cluster roots are a very effective 
strategy when the availability of phosphorus in soil is 
very low, based on their mining strategy. When soil 
phosphorus availability is greater, the mycorrhizal 
strategy is more effective, and far less costly. This 

FIGURE 3. Compound cluster roots of (a) Banksia attenuata (slender banksia) and (b) Banksia menziesii (Menzies’ banksia). Photos: a: Hongtao 
Zhong; b: Graham Zemunik.
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explains why cluster roots are common on phospho-
rus-impoverished soils, whereas mycorrhizas are the 
norm when soils contain relatively larger amounts of 
phosphorus (Lambers et al., 2014).

Dauciform roots in some Cyperaceae
Cyperaceae (sedges) is a largely non-mycorrhizal 
family (Brundrett & Tedersoo, 2018), although 
some sedge species produce arbuscular mycorrhizas 
(Lagrange et al., 2013). Many Western Australian 
sedges produce dauciform roots (Fig. 5) (Lamont, 
1974; Shane et al., 2006b) as do many species in 
this family that occur elsewhere (Selivanov & 
Utemova, 1969; Davies et al., 1973; Playsted et al., 
2006; Güsewell, 2017). These structures are much 
smaller than cluster roots and live for an even 
shorter time, about 10 days (Shane et al., 2006a). 
Like simple cluster roots, they release carboxylates 
in an exudative burst. Like cluster roots, they also 
release phosphatases, giving them access to soil 
organic phosphorus (Playsted et al., 2006). The 
formation of dauciform roots is suppressed when 

plants contain sufficient phosphorus (Güsewell, 
2017). Dauciform roots are the functional 
equivalent of simple cluster roots, despite major 
differences in morphology and anatomy. They 
only occur in some clades of Cyperaceae (Shane 
et al., 2006b; Konoplenko et al., 2017). Species of 
subgenus Carex form dauciform roots, while those 
of subgenus Vignea do not. Species with dauciform 
roots exude more citrate, but less oxalate and less 
total carboxylates than species without dauciform 
roots. They also allocate less biomass to roots. 
Species with and without dauciform roots show 

FIGURE 5. Dauciform roots of a sedge (a) freshly dug from the soil, and 
(b) after removing some of the adhering sand. Photos: Hans Lambers. 

a
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FIGURE 4. Effects of carboxylates (and other exudates) on inorganic 
(Pi) and organic phosphorus (Po) mobilisation in soil. Carboxylates 
(organic anions) are released via an anion channel. In the rhizosphere, 
carboxylates mobilise both inorganic and organic phosphorus, which 
both sorb onto soil particles. The carboxylates effectively take the place 
of phosphorus, thus pushing it in solution. Phosphatases hydrolyse 
organic phosphorus compounds, once these have been mobilised by 
carboxylates. Carboxylates will also chelate some of the cations that bind 
phosphorus, especially iron (Fe), and other micronutrients. Chelated Fe 
moves to the root surface, where it is reduced, followed by uptake by the 
roots, via a Fe2+ transporter. This transporter is not specific and also 
transports other micronutrients, especially manganese (Mn), which have 
been mobilised by carboxylates in soil. The carboxylates allow phosphorus 
to be ‘mined’, as opposed to the ‘scavenging’ strategy of mycorrhizas. For 
further explanation, see text (modified after Lambers et al., 2015).
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FIGURE 6. (a) Extremely fine short-lived capillaroid roots of Lyginia 
barbata (Anarthriaceae). Y, = young; M = mature; S = senescent 
(four weeks old). Photo: Michael W. Shane (Lambers et al., 2014). (b) 
Carboxylate exudation from extremely fine capillaroid roots of Lyginia 
barbata (M.W. Shane, unpublished).

similar growth responses to different forms of 
phosphorus and different amounts of phosphorus 
supplied. This suggests that Carex species with and 
without dauciform roots do not exhibit distinct 
phosphorus-acquisition strategies (Güsewell & 
Schroth, 2017). What appears to matter most in this 
family is that they release carboxylates, rather than 
what specialised root structure they deploy to do so. 
Despite some differences in physiological function, 
dauciform roots in European Carex species do not 
influence the nutritional niche of this group of 
sedges (Güsewell & Schroth, 2017). Clearly, more 
research is warranted on this family that features 
prominently in our flora.

Capillaroid roots in Restionaceae and Anarthriaceae
Both Restionaceae and Anarthriaceae are non-
mycorrhizal and both produce capillaroid roots 
(Lamont, 1982; Lambers et al., 2014) (Fig. 6a). Like 
simple cluster roots and dauciform roots, these roots 
also release carboxylates in an exudative burst (Fig. 
6b). There are no surveys to show how common this 
strategy is in these families.

Sand-binding roots in Haemodoraceae and  
other families 
Sand grains are very tightly bound to the root surface 
by persistent root hairs in Haemodoraceae (Fig. 7). 
The majority of genera and species in the family 
worldwide possess sand-binding roots, but two of its 
14 genera, Conostylis and Tribonanthes, have sister 
taxa with and without this trait (Smith et al., 2011). 
The presence of sand-binding roots is the probable 

ancestral condition for Haemodoraceae, associated 
with a high degree of phylogenetic conservation and 
some secondary loss, notably in Conostylis. Sand-
binding roots in this non-mycorrhizal family likely 
function like cluster roots and other specialised roots 
discussed above (Hayes et al., 2014), but further work 
is required to confirm this. Sand-binding roots in 
other families have not been studied systematically 
(Fig. 8), but this would be worth further exploration, 
taking advantage of surveys of leaf manganese 
(Mn) concentrations as a proxy for belowground 
carboxylate release (Lambers et al., 2015; Pang et al., 
2018), as further explored below.

Mycorrhizas
The vast majority of vascular plants are mycorrhizal: 
72% are arbuscular mycorrhizal (AM), 10% are 
orchid mycorrhizal, 2.0% are ectomycorrhizal 
(ECM), and 1.5% are ericoid mycorrhizal 
(Brundrett & Tedersoo, 2018)(Fig. 9). Mycorrhizal 
associations may enhance phosphorus acquisition 
from soils with low phosphorus availability by their 
‘scavenging’ strategy, because fungal hyphae reach 
zones that are not accessible by roots or root hairs 
(Smith & Read, 2008). All mycorrhizal symbioses 
are capable of this, including the most widespread 
and ancient arbuscular mycorrhizal symbiosis.

Mycorrhizal fungi increase nutrient and water 
acquisition of plants as they significantly increase 
the volume of exploited soil. Arbuscular mycorrhizas 
enhance the acquisition of inorganic phosphorus 
and other relatively immobile nutrients (Smith et 
al., 2015). There is growing evidence that arbuscular 
mycorrhizal fungi also provide protection to their 
hosts against pathogens (Wehner et al., 2010) and 
can neutralise the negative effects of pathogens for 
seedling survival and growth (Liang et al., 2015). 
Ectomycorrhizal fungi associate with far fewer plant 
species than arbuscular mycorrhizal fungi, but still 
provide the main nutrient-acquisition strategy in 
many ecosystems (e.g., temperate forests) (Brundrett, 
2009), and are thought to play a major role in nutrient 
cycling (Dickie et al., 2014). Ectomycorrhizal fungi 
can access inorganic phosphorus as well as organic 
forms of both nitrogen and phosphorus due to their 
release of proteolytic enzymes and phosphatases 
(Smith et al., 2015).

Plants can regulate mycorrhizal symbioses by 
either promoting or inhibiting them, depending 

ba
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on nutrient availability (Lambers et al., 2008b). 
For example, when soil phosphorus availability 
decreases, arbuscular mycorrhizal root colonisation 
increases, compensating for the low availability 
of phosphorus (Abbott et al., 1984). On the other 
hand, when soil phosphorus is mainly in an organic 
form, ectomycorrhizal root colonisation tends to 
increase, because of their ability to obtain nutrients 
from organic matter (Antibus et al., 1992). The 
ability of ectomycorrhizal hyphae to hydrolyse 
organic phosphorus via extracellular phosphatase 
enzymes (Smith & Read, 2008) might give them 
access to an important phosphorus fraction in the 
phosphorus-impoverished soils of Bassendean 
dunes (Turner & Laliberté, 2015). However, in the 
Bassendean dunes, ectomycorrhizal symbioses are 
unlikely to contribute substantially to the hydrolysis 
and acquisition of the available organic phosphorus 
fractions (Png et al., 2017; Lambers et al., 2018). 

This is because ectomycorrhizal colonisation tends 
to be generally low for many co-occurring plant 
species on Bassendean dunes, and does not respond 
to decreasing soil phosphorus availability (Png et al., 
2017). Host identity (Martínez-García et al., 2015) 
and interactions with other microbes (André et al., 
2003) can also have strong effects on mycorrhizal 
root associations. For example, several plant species 
can form dual associations with both arbuscular 
and ectomycorrhizal fungi (Pagano & Scotti, 2008). 
In these plants, colonisation by ectomycorrhizal 
fungi is thought to be detrimental for arbuscular 
mycorrhizal fungal colonisation. This has been 
attributed to competition between arbuscular and 
ectomycorrhizal fungi (Neville et al., 2002).

Root infection by soil-borne pathogens can 
be inhibited when roots are colonised by either 
arbuscular (Wehner et al., 2010) or ectomycorrhizal 
fungi (Branzanti et al., 1999). The mechanisms by 

FIGURE 7. Sand-binding roots in Haemodoraceae. Photos: Michael W. Shane.
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which mycorrhizal fungi can provide defence against 
pathogens differ between arbuscular mycorrhizal 
and ectomycorrhizal fungi. Arbuscular mycorrhizal 
fungi induce systemic resistance against pathogens 
and trigger the formation of callose to surround 
infected root cells, possibly slowing pathogen 
invasion into surrounding cells (Herre et al., 2007). 
Even though arbuscular mycorrhizal fungi may not 
produce antibiotic compounds themselves, there 
is some evidence that they alter their surrounding 
microbial communities in favour of microbes that 
are capable of producing these compounds (Wehner 
et al., 2010). On the other hand, ectomycorrhizal 
fungi do not appear to induce systemic resistance 
to pathogens, but provide a physical barrier against 
infection by making a hyphal sheath around the 
root (Branzanti et al., 1999) (Fig. 9a). In addition, 
they produce antibiotic compounds, for example 
diatretyne nitrile, a polyacetylene, diatretyne amide 
and diatretyne 3 (Marx, 1972).

In south-western Australian shrublands, Pro-
teaceae are a prominent plant family (Zemunik 
et al., 2015), because they produce cluster roots to 

efficiently acquire phosphorus (Lambers et al., 2014). 
Interestingly, despite their advantage in nutrient 
acquisition over other species with non-cluster-
root strategies, they never dominate in this system 
(Zemunik et al., 2015). In fact, other strategies, such 
as symbiotic associations with ectomycorrhizal fungi 
remain relatively abundant. Short-lived cluster roots 
lack an outer exodermal barrier immediately below 
their epidermis (Lambers et al., 2018), thus potentially 
making them more susceptible to root pathogens 
(Laliberté et al., 2015). Soil-borne pathogens may 
promote plant diversity by preferentially attacking, 
and therefore supressing, species with superior 
phosphorus-acquisition strategies, rather than those 
with less effective strategies to acquire phosphorus 
(Lambers et al., 2018). Recently, Laliberté et al. 
(2015) proposed that soil-borne pathogens promote 
plant diversity in phosphorus-impoverished soils 
as a result of a trade-off between phosphorus-
acquisition efficiency and pathogen defence. On one 
hand, cluster-rooted species are highly efficient at 
phosphorus acquisition, but poorly defended against 
pathogens, and on the other hand, mycorrhizal 

FIGURE 8. Sand-binding roots of Lyginia barbata (Anarthriaceae). Photo: Hongtao Zhong.
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species are strongly defended against pathogens, 
but less efficient at acquiring phosphorus in 
severely phosphorus-impoverished soil. Hence, both 
mutualistic root symbionts and soil-borne pathogens 
would be key drivers of plant community structure 
and species diversity in hyperdiverse south-western 
Australian shrublands. 

The ecological role of native soil-borne 
pathogens (especially oomycetes, or water moulds) 
in shaping plant diversity has received little 
attention in Mediterranean shrublands and this 
hypothesis requires further study (Albornoz et al., 
2017; Lambers et al., 2018). This is particularly 
important, because the introduced oomycete 
Phytophthora cinnamomi, which has devastating 
effects on south-western Australian biodiversity 
(Davison & Rikli, 2019), is combated by spraying 
phosphite in national parks and reserves (Lambers 
et al., 2013). This method of pathogen control likely 
also affects native oomycetes that may play a role 
in maintaining biodiversity in natural ecosystems. 
This situation makes it imperative to search for 
alternatives for phosphite to combat Phytophthora 
cinnamomi. A complementary hypothesis for the 
persistence of mycorrhizal plant species in this 
phosphorus-impoverished system is ‘nutrient-
mobilisation-based facilitation’, where Proteaceae 
plants mobilise nutrients through the action of their 
cluster roots, and neighbouring plants ‘tap into’ this 

resource before it is all taken up by the cluster roots 
(Muler et al., 2014; Teste et al., 2014). The available 
data support both of these hypotheses. For example, 
Teste et al. (2017) showed that the survival of non-
mycorrhizal plant species is reduced when grown 
in live conspecific inoculum (i.e. soil collected from 
under the same species) compared with sterilised 
conspecific inoculum, while ectomycorrhizal 
plant species followed the opposite trend. This 
highlights the importance of ectomycorrhizal fungi 
in boosting the defence against plant pathogens. 
In accordance, Albornoz et al. (2017) showed that 
the presence of pathogens equalises the competitive 
ability of cluster-rooted and ectomycorrhizal plant 
species, providing a potential explanation for their 
coexistence and the high degree of plant diversity in 
south-western Australia.

Leaf manganese concentrations as a proxy for 
carboxylate-releasing roots
Exudation of carboxylates mobilise not only 
phosphorus, but also iron (Fe) and manganese (Mn) 
(Fig. 4). The uptake of iron is tightly controlled in 
roots, thus avoiding iron toxicity inside the plant, 
but the uptake of manganese is not (Lambers et 
al., 2015). As a result, Proteaceae with functional 
cluster roots tend to have higher leaf manganese 
concentrations than their mycorrhizal neighbours 
(Hayes et al., 2014). Mycorrhizas tend to intercept 

FIGURE 9. Roots colonised by mycorrhizal fungi. (a) Roots of Pseudotsuga menziesii (Douglas fir) heavily colonised by ectomycorrhizal fungi. A mantle 
covers root tips from the base and ‘scavenging’ extraradical hyphae can be seen around colonised root tips. (b) A root of Melaleuca systena (coastal 
honeymyrtle) colonised by arbuscular mycorrhizal fungi. Fungal structures were stained with ink and vinegar. Intraradical hyphae and arbuscules can 
be seen. Photos: Felipe E. Albornoz.

a b
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manganese, thus further adding to the contrast 
between species (Arines et al., 1989; Lehmann & 
Rillig, 2015). High leaf manganese concentrations 
are not restricted to Proteaceae, but are also typical 
for other non-mycorrhizal carboxylate-releasing 
species (Hayes et al., 2014; Oliveira et al., 2015).

When growing next to Banksia attenuata 
(slender banksia) in pots in a glasshouse, Scholtzia 
involucrata shows higher leaf manganese 
concentrations than when grown alone, indicating 
that it benefits from the nutrients mobilised by its 
neighbour (Muler et al., 2014). Leaf manganese 
concentration can therefore be used to explore 
belowground phosphorus-acquisition strategies 
without extensive digging and sampling of 
carboxylates (Hayes et al., 2014). We can also use 
it to explore interactions between plants exhibiting 
different phosphorus-acquisition strategies, but 
this is still in its infancy. In agriculture, it can be 
used to select genotypes that differ in their release 
of carboxylates, thus allowing to breed cultivars for 
specific environments (Pang et al., 2018).

Root anatomy of carboxylate-releasing Proteaceae 
and Fabaceae and of species in other families
Nutrient and water uptake from the soil solution 
is critical to any plant, and the functioning of a 
root relies on its anatomy and physiology (Ma & 
Peterson, 2003; Ranathunge et al., 2011). At the 
same time, roots must be able to exclude potentially 
harmful substances, e.g., toxic gases, organic 
acids and toxic metals, and prevent the entry of 
pathogens. This selectivity of roots is accompanied 
by a complex root structure (Esau, 1977; Schreiber 
et al., 1999). Our knowledge of the root anatomy 
of south-western Australian native plants including 
Proteaceae is still scarce. We recently started 
exploring detailed comparative anatomical features 
of species endemic to south-western Australia 
from three families: Proteaceae, Fabaceae and 
Casuarinaceae, all producing roots with specialised 
phosphorus-mining clusters. Detailed anatomical 
and histochemical studies of cluster roots from these 
families revealed species-specific differences, but 
they all have a common and unique character – the 
lack of an exodermis, the outermost cortical layer 
and a barrier for the entry of water and pathogens 
in the roots (Fig. 10).

Not only Proteaceae, but also Fabaceae such as 

Lupinus angustifolius, Lupinus luteus, Cicer arietinum 
and Glycine max, lack a suberised exodermis in 
their roots (Perumalla et al., 1990; Hartung et al., 
2002; Ranathunge et al., 2008; Bramley et al., 2009). 
Most of these Fabaceae release large amounts of 
carboxylates (Watt & Evans, 1999; Veneklaas et 
al., 2003; Pearse et al., 2006). On the other hand, 
monocots such as Oryza sativa (rice), Saccharum 
off icinarum (sugarcane), Triticum aestivum (wheat) 
and Zea mays (maize) do produce a suberised 
exodermis (Clark & Harris, 1981; Perumalla & 
Peterson, 1986; Perumalla et al., 1990; Ranathunge 
et al., 2003). Unlike many Proteaceae and Fabaceae, 
monocots often release some specific exudates, 
but do not release large amounts of carboxylates 
(Delhaize et al., 1993; Ma et al., 2003; Pearse et al., 
2006; Li et al., 2013; Oburger et al., 2014; Sun et al., 
2016). Myrtaceae such as Calothamnus hirsutus do 
not develop cluster roots and lack the capacity to 
release large amounts of carboxylates, as is common 
in Proteaceae (Shane & Lambers, 2005). However, 
this species develops a strong and complete ring 
of exodermis, which would shield pathogen entry 
into roots (Fig. 10). There is plenty of research 
on angiosperm species in specific families that do 
or do not produce an exodermis (Perumalla et al., 
1990; Hose et al., 2001), but there is no research on 
their carboxylate exudation or their leaf manganese 
concentrations, which can be used as a proxy for 
carboxylate concentrations in the rhizosphere 
(Lambers et al., 2015; Pang et al., 2018). We surmise 
that species that release large amounts of exudates 
have evolved to strategically modify their root 
structure for rapid carboxylate exudation in order 
to efficiently take up phosphorus from nutrient-
poor soils. This hypothesis requires further testing 
involving a wider range of plant families.

Absence of a suberised exodermis may have 
some negative consequences such as providing 
easy access for pathogens to enter the root tissues, 
and allowing loss of water and nutrients from the 
roots to the dry soil by back-flow (Hose et al., 2001; 
Thomas et al., 2007; Ranathunge et al., 2008). In 
some plant species, such as Glycine max (soybean), 
‘diffuse suberin’ in the epidermal cell walls fulfils 
the requirement of an exodermis, which is lacking 
in soybean. Diffuse suberin in the epidermis acts as 
a physical and chemical barrier for the penetration 
of Phytophthora sojae, an oomycete (water mould) 



237
237

Nutrient-acquisition strategies

FIGURE 10. Deposition of suberin in the cell walls of endodermis and exodermis of plant species from different families collected in Alison Baird Reserve, 
south-western Australia. Roots of (a) Banksia telmatiaea and (b) Grevillea thelemanniana (spider net grevillea, Proteaceae), (c) Daviesia physodes 
(prickly bitter pea) and (d) Jacksonia furcellata (grey stinkwood) (both Fabaceae), and (e) Allocasuarina humilis (dwarf sheoak, Casuarinaceae) did 
not develop an exodermis. However, (f) Calothamnus hirsutus (Myrtaceae) developed a complete and strong exodermis, just below the epidermis 
(yellow arrows). All species developed an endodermis, the innermost barrier of the roots (white arrows). Cross-sections were taken at 50 - 70 mm from 
the root apex and stained with fluorol yellow 088. The presence of suberin lamellae was detected by yellow-green fluorescence (either white or yellow 
arrows). Bar = 100 µm.
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causing soybean root rot disease (Ranathunge et al., 
2008). However, there is no histochemical evidence 
indicating the presence of ‘diffuse suberin’ in the 
epidermal cell walls of cell walls of south-western 
Australian native species studied so far. Instead, the 
species without an exodermis in Proteaceae and 
Fabaceae exhibit intense deposition of phenolic 
compounds in the cell walls of the entire cortex, as 
indicated by bright autofluorescence (Fig. 10). Such 
soluble phenolic compounds, which are associated 
with suberin act as antifungal agents (Kolattukudy, 
1984; Biggs & Miles, 1988; Lulai & Corsini, 
1998; Thomas et al., 2007). In contrast, such 
intense autofluorescence, which represent phenolic 
compounds, is lacking in the cortex of Calothamnus 
hirsutus which develops a strong suberised exodermis. 
The presence of a suberised endodermis, on the 
other hand, serves as the last line of defence before 
pathogens invade the vascular cylinder and spread 
throughout the plant (Kolattukudy & Espelie, 1989; 
Enkerli et al., 1997; Enstone et al., 2003; Huitema et 
al., 2004; Thomas et al., 2007).

Cyperaceae do have an exodermis in roots 
(Perumalla et al., 1990; Enstone et al., 2003); we 
do not know the situation for Restionaceae and 
Anarthriaceae. These likely release carboxylates 
from their root hairs, and hence the absence of an 
exodermis may not be required. When considering 
the amounts of carboxylates exuded from cluster 
roots of Proteaceae, it is likely that they produce 
them not only in the epidermal cells, but also in the 
cortical cells, and release them from both.

Extracellular phosphatase enzymes of Fabaceae
Organic phosphorus represents a major fraction 
of total phosphorus in the severely phosphorus-
impoverished soils of the Bassen dean dunes (Turner 
& Laliberté, 2015). As such, the ability to acquire 
organic phosphorus could be important for many 
Bassendean species. Generally, plants are able to 
acquire organic phosphorus to varying extents by 
releasing root phosphatases, and, indirectly, via 
phosphatases synthesised by their root associates 
(e.g., ectomycorrhizal fungi) (Richardson et al., 
2005; Turner, 2008). These phosphatase enzymes 
enhance phosphorus acquisition by hydrolysing 
organic phosphorus in soil to release inorganic 
phosphorus that is available for uptake by plant 
roots (Tarafdar & Claassen, 1988). Fabaceae 

species show significantly greater root and soil 
phosphatase activity when compared with co-
occurring non-Fabaceae species in many parts of 
the world (Houlton et al., 2008; Olde Venterink, 
2011; Png et al., 2017). In particular, the roots of 
Fabaceae from the Bassendean dunes, such as those 
of Acacia pulchella (prickly Moses) and Jacksonia 
floribunda (holly pea), display exceptionally greater 
extracellular phosphatase activity than co-occurring 
non-Fabaceae species (Png et al., 2017). This strategy 
of greater investment in root phosphatase enzymes 
may provide Fabaceae with a competitive advantage 
to persist in severely phosphorus-impoverished soils 
(Png et al., 2017). 

PHOSPHORUS-UTILISATION STRATEGIES
Proteaceae
Banksia and Hakea species function at very low 
leaf phosphorus concentrations, but show rates 
of photosynthesis that are similar to those of 
crop plants with phosphorus concentrations 
that are about 10 times greater (Denton et al., 
2007; Sulpice et al., 2014). Low leaf phosphorus 
concentrations, similar to those found in several 
co-occurring Banksia species, have been found for 
Stirlingia latifolia (blueboy) growing on an ancient 
Bassendean dune in Alison Baird Reserve (Fig. 11). 
Banksia and Hakea species achieve their amazingly 
high photosynthetic phosphorus-use efficiency 
by allocating leaf phosphorus very effectively, 
compared with what we know about other plants. 
Most importantly, they function at very low levels 
of ribosomal RNA (Sulpice et al., 2014), which is 
the largest organic phosphorus fraction in leaves 
(Veneklaas et al., 2012). They also replace most of 
their phospholipids during leaf development by 
lipids that do not contain phosphorus, e.g., sulfur-
containing lipids (Lambers et al., 2012; Kuppusamy 
et al., 2014). In addition, they preferentially allocate 
leaf phosphorus to those cells that require it most 
for photosynthesis, the chloroplast-containing 
mesophyll cells (Hayes et al., 2018).

Grevillea is an interesting genus in many 
ways. It is the genus from which Hakea descended 
in the Middle Eocene–Early Oligocene, 45 to 30 
million years ago (Cardillo et al., 2017). In terms of 
phosphorus nutrition, there are distinct differences 
between the two genera. Grevillea species in 
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general, including Grevillea thelemanniana (spider 
net grevillea), a Declared Rare Flora (DRF) 
species in the Greater Brixton Street Wetlands, 
function at leaf phosphorus concentrations that 
are considerably greater than those in Hakea 
leaves (Wright et al., 2004). The leaf phosphorus 
concentration in Grevillea thelemanniana (spider net 
grevillea) is among the highest among Proteaceae 
at Alison Baird Reserve (Fig. 11). The ‘innovation’ 
that arose in Hakea to separate it from Grevillea 
and allowed this genus to diversify on more severely 
phosphorus-impoverished soils was that Hakea 
functions at leaf phosphorus concentrations that are 
only 64% of those in Grevillea. In the proposed Yule 
Brook Regional Park, which is characterised by soils 
with a very low phosphorus availability, we can find 
numerous Hakeas, but very few Grevillea species 
(Fig. 12). Grevillea species typically grow in slightly 
richer habitats, and this makes them rare in in the 
proposed Regional Park.

Myrtaceae
Myrtaceae species that co-occur with Proteaceae on 
ancient Bassendean dunes show leaf P concentrations 
that are similar to those of Banksia menziesii 
(firewood banksia) and Stirlingia latifolia (blueboy) 
(Fig. 11) and to the species referred to above 
(Denton et al., 2007; Sulpice et al., 2014). We have 
yet to find out if they also function at low ribosomal 
RNA levels and replace their phospholipids. 
However, we do know that Myrtaceae from severely 
phosphorus-impoverished habitats do allocate their 
leaf phosphorus preferentially to their mesophyll 
cells (Guilherme Pereira et al., 2018), and also 
function with a low amount of phosphorus allocated 
to nucleic acids and lipids (Yan et al., 2019).

Fabaceae
Fabaceae species that co-occur with Proteaceae 
on Bassendean dunes possess the ability to form 
symbiotic associations with nitrogen-fixing rhizobia. 
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FIGURE 12. Examples of Grevillea and Hakea (sub)species that naturally occur in the proposed Yule Brook Regional Park. Note that the number of 
Grevillea species is far less than that of Hakea species. (a) Grevillea bipinnatifida ssp. bipinnatifida (fuchsia grevillea), (b) Grevillea thelemanniana 
(spider net grevillea), (c) Hakea candolleana, (d) Hakea ceratophylla (horned leaf hakea), (e) Hakea lissocarpha (honey bush), (f) Hakea prostrata 
(harsh hakea), (g) Hakea ruscifolia (candle hakea), (h) Hakea sulcata (furrowed hakea), (i) Hakea trifurcata (two-leaf hakea) and (j) Hakea varia 
(variable-leaved hakea). Photos: a, d, e, f, g, h: Hans Lambers; b, j: Angela Rossen; c: André Arruda; i: Roberta Dayrell.
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However, nitrogen-fixing plants are generally 
thought to possess a nitrogen-demanding lifestyle 
(McKey, 1994), which has high phosphorus costs 
associated with it (Hartwig, 1998; Raven, 2012). 
Therefore, nitrogen-fixing plants are expected to be 
disadvantaged in severely phosphorus-impoverished 
soils (Houlton et al., 2008). Yet, paradoxically, many 
nitrogen-fixing species co-occur with Proteaceae in 
the severely phosphorus-impoverished soils of the 
Bassendean dunes (Zemunik et al., 2015; 2016). 
Their greater root-released phosphatase activity may 
give them greater access to organic phosphorus than 
some of their neighbours have (Png et al., 2017).

In addition to some of the phosphorus-acqui-
sition strategies discussed above, the remarkable 
persistence of the putative nitrogen-fixing species 
on the Bassendean dunes might also be associated 
with a variety of phosphorus-use strategies. Some 
Fabaceae that co-occur with Proteaceae species on 
Bassendean dunes show a fascinating pattern. Four 
of them, Acacia huegelii (Huegel’s wattle), Bossiaea 
eriocarpa (common brown pea), Daviesia physodes 
(prickly bitter pea), and Jacksonia floribunda (holy 
pea), show low leaf phosphorus concentrations, sim-
ilar to those exhibited by co-occurring Proteaceae 
and Myrtaceae (Fig. 11). By contrast, Acacia pul-
chella (prickly Moses) functions at much higher 
leaf phosphorus concentrations. This is a species 
that typically germinates in abundance after a fire 
(Monk et al., 1981), the last of which was in 2006 at 
this location. Dense populations (10,000 plants per 
ha) may establish after a summer burn. Plant densi-
ty declines to 30% of its initial value after four years, 
and to less than 8% after 13 years. Plants accumulate 
dry matter, nitrogen and phosphorus throughout a 
13-year growth period. Seed production commenc-
es after two years, reaches a maximum (12,000 seeds 
per plant per year) at three or four years, and then 
declines to 2000 seeds per plant after 13 years (Monk 
et al., 1981). To persist in severely phosphorus-im-
poverished soils, Acacia pulchella (prickly Moses) 
may compensate for its relatively high phosphorus 
requirements by down-regulating its symbiotic 
nitrogen fixation more effectively than Fabaceae 
species that occur on the younger dunes with greater 
soil phosphorus availability (Png, 2017). Png (2017) 
also observed this trait of conservative phosphorus 
use by down-regulating symbiotic nitrogen fixation 
very effectively in Jacksonia floribunda (holy pea), 

which is common on the Bassendean dunes in 
Alison Baird Reserve. The trait is likely present in 
other nitrogen-fixing species that co-occur in these 
severely phosphorus-impoverished soils (Png et al., 
2017).

Other families
Little is known about the phosphorus-use strategies 
of species from other plant families in Alison Baird 
Reserve. Callitris pyramidalis (swamp cypress) is a 
coniferous tree native to south-western Australia. 
It has a leaf phosphorus concentration as high as 
that of Acacia pulchella (prickly Moses) (Fig. 11). In 
contrast, Lyginia barbata (Anarthriaceae) has a leaf 
phosphorus concentration in the low range of values 
known for plants in the reserve. It will be interesting 
to learn whether there has been convergence of 
phosphorus-efficiency traits among the various 
plant families in the reserve. Such convergence has 
been found for photosynthetic phosphorus-use 
efficiency traits and phosphorus-allocation patterns 
among different biochemical fractions as in plants 
on the phosphorus-impoverished soils of the Jurien 
Bay dune chronosequence (Guilherme Pereira et al., 
2019; Yan et al., 2019).

Competition vs. facilitation
Non-mycorrhizal Proteaceae, Cyperaceae, Anar-
thriaceae and Haemodoraceae may have a superior 
carboxylate-releasing phosphorus-acquisition strat-
egy on severely phosphorus-impoverished soils, but 
they do co-occur with mycorrhizal species that do 
not release carboxylates. In addition, they co-occur 
with species that exhibit both strategies, for example 
Viminaria juncea (swishbush). How can we account 
for this?

The current thinking in plant ecology is that 
competition among plants is fierce when resource 
levels are high and stress levels low (Lekberg et al., 
2018), and, vice versa, competition would be mild 
when resources are limited.

SYMBIOTIC NITROGEN FIXATION

Despite nitrogen not being the limiting nutrient 
for plant growth in the severely phosphorus-
impoverished soils of the Bassendean dune 
systems (Laliberté et al., 2012; Hayes et al., 2014), 
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nitrogen input into the ecosystem remains an 
important ecological process that is essential for 
the maintenance of biodiversity and productivity. 
This is because nitrogen is continually lost from 
the ecosystem, for the most part, via natural (or 
anthropogenic) fire disturbance events (Orians 
& Milewski, 2007). While there is essentially an 
unlimited supply of nitrogen in the atmosphere 
(~78 % of atmospheric gases by volume), the 
gaseous form is not directly accessible by 
eukaryotes and has to be converted or ‘fixed’ into 
ammonia, which can then be further converted 
to other forms of nitrogen that can be assimilated  
by plants.

Nitrogen fixation in the natural world is 
done predominantly by free-living or symbiotic 
nitrogen-fixing bacteria (Vitousek & Farrington, 
1997; Galloway et al., 2004). In many terrestrial 
ecosystems, the greatest source of biological nitrogen 
fixation comes from nitrogen-fixing bacteria that 
form symbiotic associations with vascular plants 
(Cleveland et al., 1999). Although these plants are 
commonly referred to as ‘nitrogen-fixing plants’, the 
‘fixing’ of atmospheric nitrogen to other forms of 
nitrogen (primarily ammonia) is, in fact, not done 
by the plants. Rather, the conversion or ‘fixing’ of 
gaseous nitrogen is catalysed by the nitrogenase 
enzymes produced by the nitrogen-fixing microbial 
symbiont (Cooper & Scherer, 2012). However, this 
nitrogen fixation process only occurs effectively 
under anaerobic conditions due to nitrogenase 
being highly sensitive to damage by oxygen (Cooper 
& Scherer, 2012). As such, the plant symbiont 
provides this anaerobic environment to the 
nitrogen-fixing microorganism via the formation of 
specialised structures (e.g., root nodules in Fabaceae, 
rhizothamnia in actinorhizal plants), which restrict 
oxygen diffusion (Cooper & Scherer, 2012). A great 
diversity of putative nitrogen-fixing vascular plant 
species found on the Bassendean dunes possess 
either one of the following three symbiotic nitrogen 
fixation systems (Lambers et al., 2014). First, many 
Fabaceae species, including Bossiaea eriocarpa and 
Acacia pulchella (prickly Moses), form symbiotic 
associations with nitrogen-fixing rhizobia, giving 
rise to the formation of specialised root structures 
known as nodules (Monk et al., 1981; Lambers 
et al., 2014; Abrahão et al., 2018) (Fig. 13). Most 
of the rhizobia species that form symbiotic 

associations with Fabaceae occur in a few genera 
such as the Rhizobium, Mesorhizobium, Ensifer and 
Bradyrhizobium (Birnbaum et al., 2018). However, 
Birnbaum and colleagues discovered that soils from 
the Bassendean dunes, compared with younger soils 
with greater phosphorus availability, contain a large 
proportion of unique rhizobia species that are likely 
adapted to the extremely phosphorus-impoverished 
Bassendean soils (Birnbaum et al., 2018). The 
intriguing discovery of these unique rhizobia 
species warrants further research, as we may be able 
to apply it to identify highly phosphorus-efficient 
strains of rhizobia for leguminous crops. Second, the 
actinorhizal plants, such as the Allocasuarina humilis 
(dwarf sheoak) from the Casuarinaceae family, 
form symbioses with filamentous actinomycete 
nitrogen-fixing bacteria, i.e. Frankia (Chaia et 
al., 2010; Lambers et al., 2014). The symbiotic 
association between an actinorhizal plant and 
Frankia produces a specialised root structure known 
as rhizothamnia (Chaia et al., 2010) (Fig. 14). Third, 
cycads, including Macrozamia riedlei (zamia palm), 
form symbiotic associations with the nitrogen-
fixing Nostoc cyanobacteria (Halliday & Pate, 
1976). The nitrogen-fixing Nostoc symbionts are 
enclosed within elongated, coral-like root structures 
known as coralloid roots (Halliday & Pate, 1976) 
(Fig. 15). Conversely, unlike rhizobia and Frankia, 
where nitrogen-fixation occurs exclusively within 
the specialised root structures of the Fabaceae 
and actinorhizal plants, respectively, the Nostoc 
cyanobacteria are also capable of non-symbiotic 
nitrogen-fixation in their free-living state and of 
symbiotic nitrogen-fixing associations with a wide 
range of non-vascular-plant-hosts (e.g., lichens, 
bryophytes) (Svenning et al., 2005). An interesting 
difference between nodules and rhizothamnia on 
one hand and coralloid roots on the other is that 
nodules and rhizothamnia are induced by the 
microsymbionts, while coralloid roots are produced 
whether there are cyanobacteria or not (Vessey et 
al., 2005). The cyanobacteria enter at a later stage, 
in a manner that is not yet fully understood. Finally, 
while nitrogen-fixing actinorhizal plants and cycads 
are not as well represented as the Fabaceae in the 
Bassendean dunes (Zemunik et al., 2016), these 
non-Fabaceae nitrogen-fixing plants still represent a 
significant nitrogen input into ecosystems (Halliday 
& Pate, 1976; Andrews et al., 2011; Png et al., 2017).
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FIGURE 13. Nitrogen-fixing structures (nodules) of Acacia saligna (orange wattle). Photo: Hongtao Zhong.

FIGURE 14. Nitrogen-fixing structures (rhizothamnia) of Allocasuarina humilis (dwarf sheoak). Photo: Hans Lambers. 
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GREVILLEA THELEMANNIANA, A DECLARED RARE 
FLORA (DRF) SPECIES IN THE GREATER BRIXTON 
STREET WETLANDS 

Figure 11 provides a clue why Grevillea thelemanni-
ana (spider net grevillea) is rare, because it functions 
at higher leaf phosphorus concentrations than other 
Proteaceae do, and that extra phosphorus is rarely 
available in the Southwest Biodiversity Hotspot. 
Since it has this in common with other Grevillea 
species that have been studied (Wright et al., 2004), 
phosphorus availability is only part of the story. It 
also requires a greater availability of water than most 
other species (Tauss et al., 2019). Combined with 
its high demand for calcium ( J. Gao, F. Wang, H. 
Lambers & K. Ranathunge, unpubl.), which is un-
usual among Proteaceae (Hayes et al., 2019a; 2019b), 
it becomes evident why Grevillea thelemanniana is so 
rare. The combination of wet conditions and a high 
availability of both phosphorus and calcium is rare in 
south-western Australia which explains its rarity. The 
only way this species can be conserved in its natural 
habitat is by ensuring its habitat is looked after.
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